CEPC Klystron Development

Zusheng Zhou
On behalf of High Efficiency RF Source R&D Collaboration
Institute of High Energy Physics
Sep. 26, 2018,
HKUST, Hong Kong
Outline

◆ Strategy and plan
 • 650MHz/800kW meets CEPC project demands
 • >80% efficiency

◆ Progress of 1st prototype development
 • Beam dynamic, beam optics and cooling system
 • Mechanical design, infrastructure preparation

◆ Design progress on high efficiency klystron
 • Optimization using different methods
 • Multi-Beam Klystron consideration
Strategy and plan (2016 to 2021)

3 or more klystron prototypes

<table>
<thead>
<tr>
<th>Year</th>
<th>Prototypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>1<sup>st</sup></td>
</tr>
<tr>
<td>2017</td>
<td>4<sup>th</sup></td>
</tr>
<tr>
<td>2018</td>
<td>2<sup>nd</sup></td>
</tr>
<tr>
<td>2019</td>
<td>5<sup>th</sup></td>
</tr>
<tr>
<td>2020</td>
<td>3<sup>rd</sup></td>
</tr>
<tr>
<td>2021</td>
<td>6<sup>th</sup></td>
</tr>
</tbody>
</table>

- **Step 1**: 1st prototype
- **Step 2**: 2nd and 5th prototypes
- **Step 3**: 3rd and 6th prototypes
- **More**: Beyond the scope of the chart
Progress of 1st prototype development

Conventional method based on 2nd harmonic cavity in order to investigate the design and manufacture technologies for high power CW klystron.

<table>
<thead>
<tr>
<th>Main parameters</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. (MHz)</td>
<td>650</td>
</tr>
<tr>
<td>Vk (kV)</td>
<td>-81.5</td>
</tr>
<tr>
<td>Ik (A)</td>
<td>15.1</td>
</tr>
<tr>
<td>Perveance ((\mu)P)</td>
<td>0.65</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>>60</td>
</tr>
<tr>
<td>Output power (kW)</td>
<td>800</td>
</tr>
<tr>
<td>1dB bandwidth (MHz)</td>
<td>(\pm 0.5)</td>
</tr>
</tbody>
</table>
Dynamics for 1st tube

1D optimization on the dynamics and cross checked by 2D & 3D

1D AJDISK
73% efficiency

3D CST
65% efficiency

2D EMSYS
68% efficiency
Gun design

Results for beam optics using different codes and thermal-structure analysis using ANSYS

<table>
<thead>
<tr>
<th>Main parameters</th>
<th>DGUN</th>
<th>EGUN</th>
<th>MAGIC2D</th>
<th>CST</th>
<th>Design goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam waist radius (mm)</td>
<td>17.8</td>
<td>17.48</td>
<td>17.48</td>
<td>17.64</td>
<td>17.5</td>
</tr>
<tr>
<td>Perveance (µPerv)</td>
<td>0.64</td>
<td>0.64</td>
<td>0.65</td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>Current density</td>
<td><0.45</td>
<td>0.39~0.43</td>
<td>0.65</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>Current uniformity</td>
<td>9.8%</td>
<td></td>
<td></td>
<td></td>
<td><10%</td>
</tr>
</tbody>
</table>

Beam optics: Beam profile shows laminar flow, Ripple rate < 5%

Thermal deformation

Electron beam trajectory without RF drive
Focusing coils

- Designed by 2D and cross checked by 3D, very good consistency obtained
- 15 regular coils with 1 bucking coil near the gun
Cavity chain and it’s cooling system

- RF design and cooling analysis conducted
- Grooved nose cone for each cavity to suppress the multipacting effect

Cavity chain cooling scheme

Cooling pipes distribution

Temperature distribution
Collector and window

- ~2m long collector to sustain 1.23MW full beam power

>800 kW sustainable CW RF power and <1.05 VSWR @ 650 ± 0.5MHz
Mechanical design progress

• 3D model and 2D drawings are ready for manufacturing

2D drawings

3D model
Infrastructure preparation

- The bid opening date for baking furnace is Thursday and then contract will be signed.
- Construction period is less than 8 month.
- All the procedures for the construction of the plant have been completed.
- Construction period is less than 4 month.
High efficiency design

Schemes of 3 designs

- Scheme 1: Optimize cavity chain by using the same gun as 1st tube
- Scheme 2: With high voltage gun (110 kV/9.1 A), low perveance
- Scheme 3: MBK, 54 kV/20 A electron gun

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scheme 1</th>
<th>Scheme 2</th>
<th>Scheme 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. (MHz)</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>81.5</td>
<td>110</td>
<td>54</td>
</tr>
<tr>
<td>Current (A)</td>
<td>15.1</td>
<td>9.1</td>
<td>20 (2.5×8)</td>
</tr>
<tr>
<td>Beam No.</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Perveance (µP)</td>
<td>0.65</td>
<td>0.25</td>
<td>1.6 (0.2×8)</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>>70</td>
<td>~80</td>
<td>>80</td>
</tr>
<tr>
<td>Power (kW)</td>
<td>800</td>
<td>800</td>
<td>800 (100×8)</td>
</tr>
</tbody>
</table>
Scheme 1

- Same gun with the 1st tube
- Optimization

- 8 CAV/1 2nd harmonic CAV/80%/3.1m
- 10 CAV/2 2nd harmonic CAV/80%/2.9m
- 8 CAV/2 2nd harmonic CAV and 1 3rd harmonic CAV/80%/2.2m
Scheme 2

- Based on CSM, with 2nd and 3rd harmonic cavities
- Better bunching with shorter length
- AJDISK/EMSYS/CST 86%/81%/77%
- Reduce beam aperture and beam size
- KLYC 1D/ KLYC 2D/ EMSYS 82.6%/80.8%/81%
Scheme 3

- Based on CSM, with 2nd and 3rd harmonic cavities
- Perveance is 0.2 µPerv

CSM: 7 CAV / 1.8m / 87.6%
CSM: 8 CAV / 2.4m / 88.5%
Summary

• All drawings of the 1st prototype has finished and it will be processed and manufactured in the machine shop.

• The manufacturing of the 1st prototype will be completed next April because of the delays (from many months) of construction of baking furnace.

• The three different schemes for the high efficiency klystron design are ongoing simultaneously.

• The manufacturing of the 2nd prototype will be started based on the most mature scheme as soon as possible.
Thanks for your attention!